English

PAPERS

Research Articles 2015

Larval habitat characteristics of the main malaria vectors in the most endemic regions of Colombia: potential implications for larval control

Authors

Marcela Conde1, Paula X. Pareja2, Lorena I. Orjuela2, Martha L. Ahumada2, Sebastian Durán1, Jennifer A. Jara3, Braian A. Cañon3, Pilar Pérez4, John C. Beier5, Socrates Herrera6 and Martha L. Quiñones1*

Published: December 1 2015 at Malaria Journal.

Abstract

Background
Malaria incidence has recently decreased globally and, as malaria elimination is envisioned as a possibility by the health authorities, guidance is needed to strengthen malaria control strategies. Larval source treatment, which could complement routine vector control strategies, requires knowledge regarding the Anopheles larval habitats.

Methods
A cross-sectional study was conducted in three of the most malaria-endemic regions in Colombia. A total of 1116 potential larval habitats in 70 villages were sampled in three states located in western Colombia: Cordoba, Valle del Cauca and Nariño.

Results
Overall, 17.5 % (195) of the potential larval habitats were found positive for different Anophelesspecies. A total of 1683 larvae were identified belonging to seven species: Anopheles albimanus,Anopheles calderoni, Anopheles darlingi, Anopheles neomaculipalpus, Anopheles nuneztovari s.l.,Anopheles pseudopunctipennis, and Anopheles triannulatus. The most widely distributed species was An. nuneztovari s.l., which was found mainly in human-made fishponds in Cordoba and temporary puddles in Valle del Cauca. Anopheles albimanus and An. calderoni were associated with human-made wells or excavation sites in Nariño. Cordoba displayed the greatest Anophelesspecies diversity with a total of six species (Shannon diversity index H′: 1.063). Although Valle del Cauca had four species, one more than Nariño, the diversity was lower because only one species predominated, An. nuneztovari s.l. The larval habitats with the highest Shannon diversity index were lagoons (H′: 1.079) and fishponds (H′: 1.009) in Cordoba, excavation sites in Nariño (H′: 0.620) and puddles in Valle del Cauca (H′: 0.764).

Conclusions
This study provides important information regarding the larval habitats of the main malaria vectors in the most malaria-endemic regions of Colombia, which will be useful in guiding larval control operations.

The electronic version of this article is the complete one and can be found online at:

View the Article

Is there malaria transmission in urban settings in Colombia?

Authors

Julio C. Padilla, Pablo E. Chaparro, Karen Molina, Myriam Arevalo-Herrera and Sócrates Herrera

Published: November 14 2015 at Malaria Journal.

Abstract

Background
Colombia contributes a significant proportion of malaria cases in the Americas, which are predominantly rural. However, in the last 8 years ~ 10 % of the endemic municipalities have also reported urban and peri-urban malaria cases, a growing concern for health authorities. This study focused on the characterization of the officially reported urban malaria cases.

Methods
A descriptive retrospective study based on secondary information provided by the Colombian National Surveillance System-SIVIGILA for the 2008–2012 period was conducted. A total of 17 municipalities with consistent and persistent reports of urban and peri-urban malaria were selected for analysis, which included site of origin and of residence, age, gender and ethnicity of patients, health system affiliation, Plasmodium species and the presence of malaria vectors.

Results
A total of 18,113 malaria cases were reported from urban and peri-urban areas of 17 endemic municipalities. Almost 70 % of the reports originated in localities in the departments of Chocó and Nariño, located on the Pacific Coast where a predominantly Afro-Colombian population, of individuals of under 30 years of age, was the most affected (80.7 %), mainly with Plasmodium falciparum infections (52.1 %). Median annual parasite index (API) was 6.4 per 1000 inhabitants (3.4 in 2008; 10.8 in 2010 and 6.0 in 2012). Between 2011 and 2012 complicated cases (2.4 %) and malaria in pregnant women (1.4 %) were reported. Study areas reported the presence of at least seven Anopheles species considered malaria vectors. These analyses did not allow ascertaining the presumable origin of the recorded urban cases due to the lack of a consensus on a definition of urban, peri-urban and rural limits and the lack of proper verification of the geographical source of infection.

Conclusions
The study indicates the probable presence of endemic, unstable and low-intensity malaria transmission in Colombian urban and peri-urban areas of a group of municipalities located mainly on the Pacific coast region and a few others in the eastern region. There is a need to unequivocally confirm the urban or peri-urban origin of the malaria cases reported and the transmission conditions, as well as to develop and implement new strategies for urban and peri-urban malaria control and elimination.

The electronic version of this article is the complete one and can be found online at:

View the Article

High prevalence of sub-microscopic infections in Colombia

Authors

Andres F Vallejo, Pablo E Chaparro, Yoldy Benavides, Álvaro Álvarez, Juan Pablo Quintero, Julio Padilla, Myriam Arévalo-Herrera and Sócrates Herrera

Published: May 15 2015 at Malaria Journal.

Abstract

Background
Malaria transmission in Latin America is typically characterized as hypo-endemic and unstable with ~170 million inhabitants at risk of malaria infection. Although Colombia has witnessed an important decrease in malaria transmission, the disease remains a public health problem with an estimated ~10 million people currently living in areas with malaria risk and ~61,000 cases reported in 2012. This study aimed to establish the malaria prevalence in three endemic regions of Colombia to aid in designing new interventions for malaria elimination.

Methods
A cross-sectional survey was conducted in three regions of Colombia with different malaria epidemiological profiles: Tierralta (Ta), Tumaco (Tu) and Buenaventura (Bv). The Annual Parasite Index (API) was 10.7, 6.9 and 3.1, respectively. Participants were asked to respond to a sociodemographic questionnaire and then were bled to determine the Duffy genotype and the prevalence of malaria infection by microscopy and quantitative real-time PCR (qPCR).

Results
The study was conducted between October 2011 and January 2012. Eight sentinel sites with 1,169 subjects from 267 households were included. The overall prevalence of sub-microscopic infections measured by thick blood smear (TBS) was 0.3% (n = 4) whereas by qPCR it was 9.7% (n = 113), with a greater proportion (13%) in 40-50 years old individuals. Furthermore, different regions displayed different prevalence of sub-microscopic infections: Bv 12%, Ta 15%, and Tu 4%. From these 113 samples (qPCR), 74% were positive for P. vivax and 22% for P. falciparum, and 4% were mixed infections, which correlates to the overall parasite prevalence in Colombia. This study showed that in the southern Pacific coast of Colombia (Bv and Tu), around 56% of the population have a Duffy-negative genotype, compared to the northern region (Ta) where the percentage of Duffy-negative genotype is around 3%.

Conclusions
Sub-microscopic infections are prevalent across different regions in Colombia, particularly in areas with relatively low transmission intensity. The poor microscopy results suggest the need for more sensitive diagnostic tools for detection of sub-microscopic infections. This study underscores the importance of conducting active case surveillance to more accurately determine malaria incidence, and highlights the need for updating the malaria guidelines to track and treat sub-microscopic malaria infections.

The electronic version of this article is the complete one and can be found online at:

View the Article

Prospects for Malaria Elimination in Mesoamerica and Hispaniola

Authors

Sócrates Herrera, Sergio Andrés Ochoa-Orozco, Iveth J. González, Lucrecia Peinado, Martha L. Quiñones, Myriam Arévalo-Herrera

May 14, 2015 at Plos Neglected Tropical Diseases.

Abstract

Malaria remains endemic in 21 countries of the American continent with an estimated 427,000 cases per year. Approximately 10% of these occur in the Mesoamerican and Caribbean regions. During the last decade, malaria transmission in Mesoamerica showed a decrease of ~85%; whereas, in the Caribbean region, Hispaniola (comprising the Dominican Republic [DR] and Haiti) presented an overall rise in malaria transmission, primarily due to a steady increase in Haiti, while DR experienced a significant transmission decrease in this period.

The significant malaria reduction observed recently in the region prompted the launch of an initiative for Malaria Elimination in Mesoamerica and Hispaniola (EMMIE) with the active involvement of the National Malaria Control Programs (NMCPs) of nine countries, the Regional Coordination Mechanism (RCM) for Mesoamerica, and the Council of Health Ministries of Central America and Dominican Republic (COMISCA). The EMMIE initiative is supported by the Global Fund for Aids, Tuberculosis and Malaria (GFATM) with active participation of multiple partners including Ministries of Health, bilateral and multilateral agencies, as well as research centers. EMMIE’s main goal is to achieve elimination of malaria transmission in the region by 2020. Here we discuss the prospects, challenges, and research needs associated with this initiative that, if successful, could represent a paradigm for other malaria-affected regions.

View the Article

Evaluation of the Loop Mediated Isothermal DNA Amplification (LAMP) Kit for Malaria Diagnosis in P.vivax Endemic Settings of Colombia

Authors

Andrés F. Vallejo, Nora L. Martínez, Iveth J. González, Myriam Arévalo-Herrera, Sócrates Herrera.

Published: January 8, 2015 at Plos Neglected Tropical Diseases.

Abstract

Background

Most commonly used malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections which are frequent in low transmission settings. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too laborious for field deployment. In this study, the applicability of a malaria diagnosis kit based on loop-mediated isothermal amplification (mLAMP) was assessed in malaria endemic areas of Colombia with Plasmodium vivax predominance.

Methodology/Principal Findings

First, a passive case detection (PCD) study on 278 febrile patients recruited in Tierralta (department of Cordoba) was conducted to assess the diagnostic performance of the mLAMP method. Second, an active case detection (ACD) study on 980 volunteers was conducted in 10 sentinel sites with different epidemiological profiles. Whole blood samples were processed for microscopic and mLAMP diagnosis. Additionally RT-PCR and nested RT-PCR were used as reference tests. In the PCD study, P. falciparum accounted for 23.9% and P. vivax for 76.1% of the infections and no cases of mixed-infections were identified. Microscopy sensitivity for P. falciparum and P. vivax were 100% and 86.1%, respectively. mLAMP sensitivity for P. falciparum and P. vivax was 100% and 91.4%, respectively. In the ACD study, mLAMP detected 65 times more cases than microscopy. A high proportion (98.0%) of the infections detected by mLAMP was from volunteers without symptoms.

Conclusions/Significance

mLAMP sensitivity and specificity were comparable to RT-PCR. LAMP was significantly superior to microscopy and in P. vivax low-endemicity settings and under minimum infrastructure conditions, it displayed sensitivity and specificity similar to that of single-well RT-PCR for detection of both P. falciparum and P. vivax infections. Here, the dramatically increased detection of asymptomatic malaria infections by mLAMP demonstrates the usefulness of this new tool for diagnosis, surveillance, and screening in elimination strategies.

The electronic version of this article is the complete one and can be found online at:

View the Article

Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia

Authors

Myriam Arévalo-Herrera, Mary Lopez-Perez, Luz Medina, Alberto Moreno, Juan B Gutierrez and Sócrates Herrera

Published: 11 April 2015 at Malaria Journal.

Abstract

Background

Malaria transmission in Latin America is generally hypoendemic and unstable, with Plasmodium vivax as the most prevalent species. However, only a few studies have been carried out in areas with low and unstable transmission, whereas the clinical profile of malaria has been broadly described in hyperendemic areas. The pattern of clinical manifestations and laboratory findings in low to moderate endemic areas of Colombia is reported here.

Methods

A passive surveillance study was conducted between 2011 and 2013 involving 1,328 patients with Plasmodium falciparum, P. vivax or mixed malaria infections attending malaria points-of-care of four malaria endemic-areas with distinct transmission intensities and parasite distribution. Trained physicians recorded clinical symptoms and signs as well as socio-demographic characteristics of study participants. Haematological, biochemical and urine tests were performed at the time of diagnosis.

Results

Out of 1,328 cases, 673 (50.7%) were caused by P. vivax; 650 (48.9%) were due to P. falciparum; and five (0.4%) patients had mixed infections (P. falciparum/P. vivax). Most patients (92.5%) presented with uncomplicated malaria characterized by fever, chills, headache, sweating, myalgia/arthralgia and parasitaemia ≤ 20,000 parasites/μL. Fever, tachycardia, pallor and abdominal pain on palpation were more frequent in P. falciparum patients, whereas mild hepatomegaly and splenomegaly were mostly observed with P. vivax. Non-severe anaemia (Hb 7.0-10.9 g/dL) was observed in 20% of the subjects, whereas severe anaemia (Hb < 7.0 g/dL) was present in four patients. Half of the patients presented thrombocytopaenia regardless of parasite species. Leukopaenia, neutrophilia and monocytosis were frequently observed in patients infected with P. falciparum. Mild-to-moderate biochemical alterations were present in ~25% of the patients, particularly abnormal bilirubin in those with P. falciparum and abnormal transaminases in P. vivax malaria patients. Proteinuria was present in ~50% of the patients regardless of parasite species, whereas haemoglobinuria was more common in P. vivax infections. Only 7.5% of the cases were classified as clinically severe malaria, caused by both P. vivax and P. falciparum.

Conclusions

The high prevalence of uncomplicated malaria associated with moderate parasitaemia suggests the importance of timely diagnosis and effective treatment and encourages new activities to further decrease complicated malaria cases and mortality.

Keywords: Clinical profile; Plasmodium falciparum ; Plasmodium vivax ; Malaria; Colombia

The electronic version of this article is the complete one and can be found online at:

View the Article

Recombinant Pvs48/45 Antigen Expressed in E. coli Generates Antibodies that Block Malaria Transmission in Anopheles albimanus Mosquitoes

Authors

Myriam Arévalo-Herrera , Andrés F. Vallejo, Kelly Rubiano, Yezid Solarte, Catherin Marin, Angélica Castellanos, Nora Céspedes, Sócrates Herrera.

Published: March 16, 2015 at Plos One.

Abstract

Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ~60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.

The electronic version of this article is the complete one and can be found online at:

View the Article

Plasmodium vivax malaria at households: spatial clustering and risk factors in a low endemicity urban area of the northwestern Peruvian coast

Authors

Angel Rosas-Aguirre, Oscar J Ponce, Gabriel Carrasco-Escobar, Niko Speybroeck, Juan Contreras-Mancilla, Dionicia Gamboa, Edwar Pozo, Sócrates Herrera and Alejandro Llanos-Cuentas.

Published: 24 April 2015 at Malaria Journal.

Abstract

Background

Peru has presented a decreasing malaria trend during the last decade, particularly in areas on northwestern coast; however, a limited number of cases continues to be reported yearly mainly in malaria hotspots.

Methods

A two-phase study was conducted to identify spatial and temporal clusters of incident Plasmodium vivax malaria, as well as to determine risk factors associated with households (HH) presenting P. vivax malaria episodes in an urban area of the northwestern Peruvian Coast from June 2008 to May 2010. In the first stage, a full census of the study population was conducted, including geo-referencing of reported P. vivax episodes. In the second stage, a population-based case–control study allowed the identification of risk factors associated with HHs reporting episodes. A total of 117 case HHs with reported P. vivax and 117 control HHs without malaria episodes were assessed. A semi-structured questionnaire was used to interview the head of households and to collect data on HH location and structure, availability of public services, preventive malaria measures, family member with outdoor occupation (farmer, moto-taxi driver), and other HH characteristics. Univariate and multivariate logistic regression analyses were performed to determine case-HH risk factors. SaTScan was used to detect spatial and temporal P. vivax malaria clusters.

Results

The most likely spatial cluster of malaria incidence included 1,040 people (22.4% of total population) in 245 HHs (24.6% of total HHs) accounting for 283 malaria episodes (40.1% of total episodes) during the study period (RR = 2.3, p < 0.001). A temporal cluster was also identified from April 12, 2009 to July 4, 2009 accounting for 355 malaria episodes (50.4% of total episodes) (RR = 7.2, p = 0.001). Factors significantly associated with case HHs compared with control HHs were: proximity to water drain < 200 metres (OR = 2.3, 95% CI: 1.3, 4.0); HH size >5 individuals (OR = 1.8, 95% CI: 1.0, 3.2); lack of potable water (OR = 1.8, 95% CI: 1.1, 3.2); and having domestic and peridomestic animals (OR = 3.6, 95% CI: 1.3, 9.5).

Conclusion

Plasmodium vivax malaria incidence is highly heterogeneous in space and time in the urban study area with important geographical and housing risk factors associated with symptomatic episodes.

Keywords: Malaria; Hotspots; Clustering; Risk factors; Low transmission

The electronic version of this article is the complete one and can be found online at:

View the Article

Research Articles 2014

Plasmodium vivax Sporozoite Challenge in Malaria-Naïve and Semi-Immune Colombian Volunteers

Authors

Myriam Arévalo-Herrera , David A. Forero-Peña, Kelly Rubiano, José Gómez-Hincapie, Nora L. Martínez, Mary Lopez-Perez, Angélica Castellanos, Nora Céspedes, Ricardo Palacios, José Millán Oñate, Sócrates Herrera.

Published: June 25, 2014 at Plos One.

Abstract

Background

Significant progress has been recently achieved in the development of Plasmodium vivax challenge infections in humans, which are essential for vaccine and drug testing. With the goal of accelerating clinical development of malaria vaccines, the outcome of infections experimentally induced in naïve and semi-immune volunteers by infected mosquito bites was compared.

Methods

Seven malaria-naïve and nine semi-immune Colombian adults (n = 16) were subjected to the bites of 2–4 P. vivax sporozoite-infected Anopheles mosquitoes. Parasitemia levels, malaria clinical manifestations, and immune responses were assessed and compared.

Results

All volunteers developed infections as confirmed by microscopy and RT-qPCR. No significant difference in the pre-patent period (mean 12.5 and 12.8 days for malaria-naïve and malaria-exposed, respectively) was observed but naïve volunteers developed classical malaria signs and symptoms, while semi-immune volunteers displayed minor or no symptoms at the day of diagnosis. A malaria-naïve volunteer developed a transient low submicroscopic parasitemia that cured spontaneously. Infection induced an increase in specific antibody levels in both groups.

Conclusion

Sporozoite infectious challenge was safe and reproducible in semi-immune and naïve volunteers. This model will provide information for simultaneous comparison of the protective efficacy of P. vivax vaccines in naïve and semi-immune volunteers under controlled conditions and would accelerate P. vivax vaccine development.

The electronic version of this article is the complete one and can be found online at:

View the Article

Knowledge, attitudes and practices of malaria in Colombia

Authors

David A Forero, Pablo E Chaparro, Andres F Vallejo, Yoldy Benavides, Juan B Gutiérrez, Myriam Arévalo-Herrera and Sócrates Herrera

Published: 1 May 2014 at Malaria Journal.

Abstract

Background

Although Colombia has witnessed an important decrease in malaria transmission, the disease remains a public health problem with an estimated ~10 million people currently living in areas with malaria risk and ~61,000 cases reported in 2012. This study aimed to determine and compare the level of knowledge, attitudes and practices (KAP) about malaria in three endemic communities of Colombia to provide the knowledge framework for development of new intervention strategies for malaria elimination.

Methods

A cross-sectional KAP survey was conducted in the municipalities of Tierralta, Buenaventura and Tumaco, categorized according to high risk (HR) and moderate risk (MR) based on the annual parasite index (API). Surveys were managed using REDCap and analysed using MATLAB and GraphPad Prism.

Results

A total of 267 residents, mostly women (74%) were surveyed. Although no differences were observed on the knowledge of classical malaria symptoms between HR and MR regions, significant differences were found in knowledge and attitudes about transmission mechanisms, anti-malarial use and malaria diagnosis. Most responders in both regions (93.5% in MR, and 94.3% in HR areas) indicated use of insecticide-treated nets (ITNs) to protect themselves from malaria, and 75.5% of responders in HR indicated they did nothing to prevent malaria transmission outdoors. Despite a high level of knowledge in the study regions, significant gaps persisted relating to practices. Self-medication and poor adherence to treatment, as well as lack of both indoor and outdoor vector control measures, were significantly associated with higher malaria risk.

Conclusions

Although significant efforts are currently being made by the Ministry of Health to use community education as one of the main components of the control strategy, these generic education programmes may not be applicable to all endemic regions of Colombia given the substantial geographic, ethnic and cultural diversity.

The electronic version of this article is the complete one and can be found online at:

View the Article

Field evaluation of an automated RDT reader and data management device for Plasmodium falciparum/Plasmodium vivax malaria in endemic areas of Colombia

Authors

Sócrates Herrera, Andrés F Vallejo, Juan P Quintero, Myriam Arévalo-Herrera, Marcela Cancino and Santiago Ferro

Published: 10 March 2014 at Malaria Journal.

Abstract

Background
Massive implementation of malaria diagnostics in low-resource countries is regarded as a pivotal strategy in control and elimination efforts. Although malaria rapid diagnostic tests (RDTs) are considered a viable alternative, there are still obstacles to the widespread implementation of this strategy, such as reporting constraints and lack of proper quality assurance of RDT-based programmes at point-of-care (POC).

Methods
A prospective cohort of patients, seeking routine care for febrile episodes at health centres in malaria-endemic areas of Colombia, was used to assess the diagnostic performance of a device based on smartphone technology (Deki ReaderTM, former codename “GenZero”), that assists users at POC to process RDTs. After informed consent, patients were enrolled into the study and blood samples were collected for thick blood smear (TBS) and RDT. The RDT results were interpreted by both visual inspection and Deki Reader device and concordance between visual and device interpretation was measured. Microscopy corrected by real-time polymerase chain reaction (PCR) and microscopy were “gold standard” tests to assess the diagnostic performance.

Results
In total, 1,807 patients were enrolled at seven health centres in malaria-endemic areas of Colombia. Thirty-three Plasmodium falciparum and 100 Plasmodium vivax cases were positive by corrected microscopy. Both sensitivity and specificity were 93.9% (95% CI 69.7-95.2) and 98.7% (95% CI 98.5-99.4) for P. falciparum, and 98.0% (95% CI 90.3-98.9) and 97.9% (95% CI 97.1-98.5) for P. vivax. Percentage concordance between visual and device interpretation of RDT was 98.5% and 99.0% for P. vivax and P. falciparum, respectively.The RDT, when compared to TBS, showed high sensitivity and specificity for P. falciparum in both visual and device interpretation, and good overall diagnostic performance for P. vivax. Comparison between PCR as gold standard and visual and device interpretation showed acceptable overall performance for both species.

Conclusions
The diagnostic performance of the Deki Reader was comparable to visual interpretation of RDTs (without significant differences) for both malaria species. Providing standardized automated interpretation of RDTs at POC in remote areas, in addition to almost real-time reporting of cases and enabling quality control would greatly benefit large-scale implementation of RDT-based malaria diagnostic programmes.
The electronic version of this article is the complete one and can be found online at:

View the Article

Plasmodium vivax Antigen Discovery Based on Alpha-Helical Coiled Coil Protein Motif

Authors

Nora Céspedes, Catherine Habel, Mary Lopez-Perez, Angélica Castellanos, Andrey V. Kajava, Catherine Servis, Ingrid Felger, Remy Moret, Myriam Arévalo-Herrera, Giampietro Corradin, Sócrates Herrera

June 24, 2014 at Plos One.

Abstract

Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

View the Article

Research Articles 2007-2013
Characterization of a malaria outbreak in Colombia in 2010

Authors

Pablo Chaparro, Julio Padilla, Andrés F Vallejo and Sócrates Herrera

Published: 17 September 2013 at Malaria Journal.

Abstract

Background
Although malaria has presented a significant reduction in morbidity and mortality worldwide during the last decade, it remains a serious global public health problem. In Colombia, during this period, many factors have contributed to sustained disease transmission, with significant fluctuations in an overall downward trend in the number of reported malaria cases. Despite its epidemiological importance, few studies have used surveillance data to describe the malaria situation in Colombia. This study aims to describe the characteristics of malaria cases reported during 2010 to the Public Health Surveillance System (SIVIGILA) of the National Institute of Health (INS) of Colombia.

Methods
A descriptive study was conducted using malaria information from SIVIGILA 2010. Cases, frequencies, proportions, ratio and measures of central tendency and data dispersion were calculated. In addition, the annual parasite index (API) and the differences between the variables reported in 2009 and 2010 were estimated.

Results
A total of 117,108 cases were recorded by SIVIGILA in 2010 for a national API of 10.5/1,000 habitants, with a greater number of cases occurring during the first half of the year. More than 90% of cases were reported in seven departments (=states): Antioquia: 46,476 (39.7%); Chocó: 22,493 (19.2%); Cordoba: 20,182 (17.2%); Valle: 6,360 (5.4%); Guaviare: 5,876 (5.0%); Nariño: 4,085 (3.5%); and Bolivar: 3,590 (3.1%). Plasmodium vivax represented ~71% of the cases; Plasmodium falciparum ~28%; and few infrequent cases caused by Plasmodium malariae.

Conclusions
Overall, a greater incidence was found in men (65%) than in women (35%). Although about a third of cases occurred in children 5 years of age. The ethnic distribution indicated that about 68% of the cases occurred in mestizos and whites, followed by 23% in Afro-descendants, and the remainder (9%) in indigenous communities. In over half of the cases, consultation occurred early, with 623 complicated and 23 fatal cases. However, the overall incidence increased, corresponding to an epidemic burst and indicating the need to strengthen prevention and control activities as well as surveillance to reduce the risk of outbreaks and the consequent economic and social impact.The electronic version of this article is the complete one and can be found online at:

View the Article

Research Priorities for Neglected Infectious Diseases in Latin America and the Caribbean Region

Authors

Jean-Claude Dujardin , Socrates Herrera, Virgilio do Rosario, Jorge Arevalo, Marleen Boelaert, Hernan J. Carrasco, Rodrigo Correa-Oliveira, Lineth Garcia, Eduardo Gotuzzo, Theresa W. Gyorkos, Alexis M. Kalergis, Gustavo Kouri, Vicente Larraga, Pascal Lutumba, Maria Angeles Macias Garcia, Pablo C. Manrique-Saide, Farrokh Modabber, Alberto Nieto, Gerd Pluschke, Carlos Robello, Antonieta Rojas de Arias, Martin Rumbo, Jose Ignacio Santos Preciado, Shyam Sundar, Jaime Torres, Faustino Torrico, Patrick Van der Stuyft, Kathleen Victoir, Ole F. Olesen

October 26, 2010 at Plos Neglected Tropical Diseases.

Abstract

Background and Rationale
Global priorities for research in neglected infectious diseases (NIDs) can be assessed in different ways, but it is important to realize that regional priorities may significantly differ one from another. The region of Latin America and the Caribbean (LAC) is—along with Africa and Asia—more affected by NIDs than other regions of the world. Some of the Latin American NIDs are common to other continents, while others are very specific or disproportionately affect the Latin American region [1]–[3] (Table 1). Because of its huge ecological diversity, ongoing environmental changes, and massive migrations, LAC is also a catalyst for the (re-)emergence and spreading of NIDs, both inside and outside the subcontinent. Following a colloquium on NIDs in LAC held in Lima, Peru, between 12 and 14 November 2009, a thematic workshop was organized with the support of the European Commission (EC). It involved 29 scientists (16 from the Americas, two from the Democratic Republic of Congo and India, respectively, and nine from Europe) working on different NIDs and representing several research areas from basic to applied. This report summarizes the consensus comments of the expert group after oral and written consultation. It is envisaged that this document should stimulate a debate within the scientific community and serve as a recommendation for future actions by international or regional funding agencies in the area of NIDs in LAC.

View the Article

Plasmodium vivax circumsporozoite genotypes: a limited variation or new subspecies with major biological consequences

Authors

Wanessa C Souza-Neiras, Luciane M Storti-Melo, Gustavo C Cassiano, Vanja SCA Couto, Álvaro ARA Couto, Irene S Soares, Luzia H Carvalho, Maristela G Cunha, Marinete M Póvoa, Socrates Herrera, Myriam A Herrera, Andrea RB Rossit, Claudia MA Carareto and Ricardo LD Machado

Published: 23 June 2010 at Malaria Journal.

Abstract

Background
Plasmodium vivax circumsporozoite variants have been identified in several geographical areas. The real implication of the genetic variation in this region of the P. vivax genome has been questioned for a long time. Although previous studies have observed significant association between VK210 and the Duffy blood group, we present here that evidences of this variation are limited to the CSP central portion.

Methods
The phylogenetic analyses were accomplished starting from the amplification of conserved domains of 18 SSU RNAr and Cyt B. The antibodies responses against the CSP peptides, MSP-1, AMA-1 and DBP were detected by ELISA, in plasma samples of individuals infected with two P. vivax CS genotypes: VK210 and P. vivax-like.

Results
These analyses of the two markers demonstrate high similarity among the P. vivax CS genotypes and surprisingly showed diversity equal to zero between VK210 and P. vivax-like, positioning these CS genotypes in the same clade. A high frequency IgG antibody against the N- and C-terminal regions of the P. vivax CSP was found as compared to the immune response to the R- and V- repetitive regions (p = 0.0005, Fisher’s Exact test). This difference was more pronounced when the P. vivax-like variant was present in the infection (p = 0.003, Fisher’s Exact test). A high frequency of antibody response against MSP-1 and AMA-1 peptides was observed for all P. vivax CS genotypes in comparison to the same frequency for DBP.

Conclusions
This results target that the differences among the P. vivax CS variants are restrict to the central repeated region of the protein, mostly nucleotide variation with important serological consequences.

View the Article

Shift in epitope dominance of IgM and IgG responses to Plasmodium falciparum MSP1 block 4

Authors

Sandra P Chang, Alexander KK Kayatani, Zilka I Terrientes, Socrates Herrera, Rose GF Leke and Diane W Taylor

13 January 2010 at Malaria Journal.

Abstract

Background
Plasmodium falciparum merozoite surface protein-1 (MSP1) has been extensively studied as a blood-stage malaria vaccine candidate, with most work focused on the conserved 19 kDa and semi-conserved 42 kDa C-terminal regions (blocks 16-17) and the hypervariable N-terminal repeat region (block 2). However, recent genotyping studies suggest that additional regions of MSP1 may be under selective pressure, including a locus of intragenic recombination designated as block 4 within the 3′ region of the gene.

Methods
The current study examined the antibody response to the two parental and two recombinant forms of block 4 and to blocks 16-17 (3D7) in study populations from Colombia, Papua New Guinea and Cameroon that differ in malaria transmission intensity and ethnic composition.

Results
IgM and IgG antibodies were detected against parental and recombinant MSP1 block 4 peptides in all three populations. Overall, 32-44% of the individuals produced IgM to one or more of the peptides, with most individuals having IgM antibodies reactive with both parental and recombinant forms. In contrast, IgG seropositivity to block 4 varied among populations (range 15-65%), with the majority of antibodies showing specificity for one or a pair of block 4 peptides. The IgG response to block 4 was significantly lower than that to blocks 16-17, indicating block 4 is subdominant. Antibodies to block 4 and blocks 16-17 displayed distinct IgG subclass biases, with block 4 responses biased toward IgG3 and blocks 16-17 toward IgG1. These patterns of responsiveness were consistently observed in the three study populations.

Conclusions
Production of antibodies specific for each parental and recombinant MSP1 block 4 allele in different populations exposed to P. falciparum is consistent with balancing selection of the MSP1 block 4 region by the immune response of individuals in areas of both low and high malaria transmission. MSP1 block 4 determinants may be important in isolate-specific immunity to P. falciparum.

View the Article

Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif

Authors

Viviane Villard, George W. Agak, Géraldine Frank, Ali Jafarshad, Catherine Servis, Issa Nébié, Sodiomon B. Sirima, Ingrid Felger, Myriam Arevalo-Herrera, Socrates Herrera, Frederic Heitz, Volker Bäcker, Pierre Druilhe, Andrey V. Kajava, Giampietro Corradin

July 25, 2007 at Plos One.

Abstract

To identify malaria antigens for vaccine development, we selected α-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally “native” epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high α-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.

View the Article